
IJSRSET152279 | Received: 22 March 2015 | Accepted: 30 March 2015 | March-April 2015 [(1)2: 254-258]

© 2015 IJSRSET | Volume 1 | Issue 2 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

254

Profile Based Concurrent Data Download – Cloud, Data Sharing
& Load Balancing

M. Gayathri, K. Jayanth, S. Gubendhirapandian, P. Ashokkumar
Computer Science and Engineering, Dhanalakshmi College of Engineering, Chennai, Tamilnadu, India

ABSTRACT

In the EXISTING SYSTEM each processing node will partition a data set independently. There is no data sharing.

In the PROPOSED SYSTEM, we are developing Two Techniques namely Data Download & Data Sharing. In Data

Download Model, Priority based Retrieval is achieved based on the Query. The requested data is downloaded from

different Servers as the Data are partitioned. In Data sharing, the data are divided into different chunks and stored

as threads in the partition matrix. From the partition matrix the data will be retrieved for the read/write purpose

without overlapping. The MODIFICATION part of the project is to implement Real Time Cloud (Drop Box) along

with load balancing &Automatic and Continuous Data retrieval. Data sharing and download is achieved as said in

proposed system, except data is encrypted using AES. Data is partitioned into different sub cloud servers (SCS). For

Example „DO‟ Splits the File into 8 Parts, and starts uploading to the Cloud. During uploading Process, a High

Priority user sends File request to the Cloud then Cloud will Start Transmitting the Data even before entire content

is stored in the cloud. We implement Load Monitoring system among SCS.

Keywords: Cloud Deployment Module, Priority based Profile Filtering Module, Data Encryption and Chunking

Module, Drop box Setup Module, Concurrent Data Transfer Module, Load Balancing and Data Delivery Module.

I. INTRODUCTION

Parallel database systems [1], [2] have long been a

success story, as the data flow of query processing

algorithms exhibits highly parallelizable portions. By

employing partition parallelism, it has been possible to

build highly scalable parallel database systems that

exhibit almost ideal linear speedups. To enforce partition

parallelism, however, the underlying system architecture

should be conducive. To that end, shared-nothing

architectures have traditionally been used: each

processing node in the system independently processes a

partition of the data set. No sharing is enforced either at

load-time, with data pre-processed and partitioned and

each partition shipped to different nodes of the system;

or at query-time, by dynamically splitting a data set into

disjoint partitions. Though a shared-nothing architecture

is still the way to go, it is interesting to see what happens

at the level of a single processing node. The reason is

that contemporary CPUs are parallel machines

themselves, by enclosing multiple processing cores in a

single chip. However, they differ from shared-nothing

machines as there is nothing in the execution model

enforcing that all cores process disjoint sets. Sharing is

at multiple levels of the processing stack, for example,

the memory hierarchy, or system resources. Thus, it is

up to the programmer to enforce parallelism constraints

at runtime. In this paper, we present and evaluate

parallel implementations of the fundamental query

processing algorithms tailored for execution on

multicore systems. The key concept of processing in

multicore systems is the thread a single execution flow

supported by hardware. Multicore systems process data

by concurrently executing multiple threads, with the

resulting paradigm termed multithreaded processing.

Another key concept is the hardware context: the logical

processor that executes a single thread. Different

multicore chips, also known as chip multiprocessors or

CMPs, implement hardware contexts in different ways.

This results in a multitude of hardware designs. Each

design has its own pros and cons, some of which

generically appear in any type of processing, whereas

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

255

others manifest specifically in database query processing.

Regardless of the architecture, there is one main

bottleneck that is aggravated when it comes to multicore

chips: access to main memory. To that end, we

empirically confirm and evaluate the three facets of the

memory bottleneck in a multicore context, and exhibit

their impact on query evaluation. After identifying the

problems, the natural next step is to enrich query engines

with primitives that overcome these problems and

specifically target multithreaded query evaluation. We

present a query engine architecture that is based on the

familiar concept of partition parallelism adapted for the

multicore setting. This design is based on 1) a

combination of data partitioning and task based

processing for effective parallelization, 2) managing

memory in a way that eliminates the need for per-thread

memory pools while, at the same time, allows the

system to scalability cater for the memory needs of the

concurrently executing threads, and 3) data structures

that are efficiently manipulated by multiple threads

without any need for complex synchronization. Having

such a design in place allows us to implement efficient

multithreaded versions of the fundamental query

processing algorithms, namely selections, projections,

partitioning, sorting, join evaluation, and aggregation.

For each algorithm we present multiple alternatives. All

of them use the principles of the underlying design and

strive for simplicity and hardware independence. We

undertake an extensive experimental study to compare

the performance of the algorithms in a variety of

scenarios, both in terms of data and query properties and

in terms of underlying hardware. Our results show that

the choice of algorithm is neither a clear nor an easy one.

The optimal choice depends on the execution model of

the hardware and the properties of the input and query at

hand. Coming up with a high-performing

implementation of a specific algorithm on a particular

type of hardware and for a specific type of input is not

our goal. Rather, our goal is to develop and evaluate

generic multithreaded query processing primitives that

can then be ported to and optimized for specific

hardware. With good system and algorithmic designs, it

is indeed possible to have predictable and scalable

performance across hardware. We believe our work

serves as a starting point toward having a powerful

toolkit of multithreaded query processing solutions.

Figure 1: The System

II. METHODS AND MATERIAL

A. Cloud Deployment Module

Cloud Service Provider will contain the large amount of

data in their Data Storage. Also the Cloud Service

provider will maintain the all the User/ Data Owner

information to authenticate when they want to login into

their account. The User / Data Owner information will

be stored in the Database of the Cloud Service Provider.

Also the Cloud Server will redirect the User requested

job to the any of the Queue to process the User

requested Job. The Request of all the Users will process

by the Virtual Machines in the Queue. To communicate

with the Client and the with the other modules of the

Cloud Network, the Cloud Server will establish

connection between them. For this Purpose we are going

to create a User Interface Frame. Also the Cloud Service

Provider will send the User Job request to the Queues in

Fist in First out (FIFO) manner.

B. Priority Based Profile Filtering Module

In this project we introduce a concept of priority based

profile filtering that is we have two type profile in our

project first one is paid user and the second one non paid

user .so based on the profile the user can able to

download and upload the data. By using this technique

we can easily reduce the burden of the cloud server to

provide the service.

Multicore systems and multithreaded processing are now

the de facto standards of enterprise and personal

computing. If used in an uninformed way, however,

multithreaded processing might actually degrade

performance. We present the facets of the memory

access bottleneck as they manifest in multithreaded

processing and show their impact on query evaluation.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

256

We present a system design based on partition

parallelism, memory pooling, and data structures

conducive to multithreaded processing. Based on this

design, we present alternative implementations of the

most common query processing algorithms, which we

experimentally evaluate using multiple scenarios and

hardware platforms. Our results show that the design

and algorithms are indeed scalable across platforms, but

the choice of optimal algorithm largely depends on the

problem parameters and underlying hardware.

C. Data Encryption And Chunking Module

In this module we are going describe about the chunking,

that is chunking [8], [9] mean a large file is split into

eight parts of files and they have been stored in different

server. The use of splitting is to reduce the load of server

and to provide quality of service to the cloud user while

they were uploading or downloading files .And another

thing we are implement security to the file while we split

form main cloud, we are going to encrypted file AES

algorithm to provide security to the cloud owner. Before

you upload to cloud the data is encrypted and then it is

chunked. Data that is passed through the de-duplication

engine is chunked into smaller units and assigned

identities using cryptographic hash functions. Thereafter,

two chunks of data are compared to ascertain whether

they have the same identity. If the answer is yes, a link

to the data (and not the chunk), is included in the

incremental backup. If the answer is no, it is accepted as

an independent chunk of data and uploaded to the

backup server. While some algorithms accept the

premise and create algorithms for identifying similar

chunks of data based on similar identities, other

algorithms take into consideration the pigeonhole

concept while designing the algorithm. The pigeonhole

principle in mathematics and computer science states

that if “n” items are put into “m” pigeonholes with n>m,

then at least one pigeon hole must contain more than one

item. Chunking for de- duplication can be frequency

based or content based. Frequency based chunking

identifies high frequencies of occurrences of data chunks.

The algorithm uses this frequency information to

enhance data duplication gain. Content based chunking

is a stateless chunking algorithm which partitions a long

stream of data into smaller units or chunks and removes

duplicate ones. However, this type of algorithm is

random and does not provide performance guarantee.

Commercial implementations of de-duplication vary

primarily in the chunking method and architecture that is

used. Some online backup algorithms chunk data

according to physical layer constraints (for instance a

4KB block size); others only use complete files (as in

single instance storage algorithms) as data chunks. But,

the most intelligent, though CPU intensive, chunking

methodology is considered to be the sliding block

methodology. In this methodology, a window is passed

along the file stream to identify the natural internal file

boundaries.

D. Advanced Encryption Standard Algorithm

For encryption, each round consists of the following

four steps: 1) Substitute bytes, 2) Shift rows, 3) Mix

columns, and 4) Add round key. The last step consists of

XORing the output of the previous three steps with four

words from the key schedule. For decryption, each

round consists of the following four steps: 1) Inverse

shift rows, 2) Inverse substitute bytes, 3) Add round key,

and 4) Inverse mix columns. The third step consists of

XORing the output of the previous two steps with four

words from the key schedule. Note the differences

between the order in which substitution and shifting

operations are carried out in a decryption round vis-a-vis

the order in which similar operations are carried out in

an encryption round. The last round for encryption does

not involve the “Mix columns “step. The last round for

decryption does not involve the “Inverse mix columns”

step.

Figure 2: Encryption Standard Algorithm

E. Dropbox Setup Module

In this module we implement the real cloud as Drop box.

Drop box is a file hosting service operated by Drop box

software. Dropbox allows users to create a special folder

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

257

on each of their computers, which Dropbox then

synchronizes so that it appears to be the same folder

(with the same contents) regardless of which computer is

used to view it. Files placed in this folder also are

accessible through a website and mobile phone

applications.

F. Concurrent Data Transfer Module

In this module we going to implement the Concurrent

data transfer processing in a computing model in which

multiple processors execute instructions simultaneously

for better performance. Concurrent [5] means something

that happens at the same time as something else. Tasks

are broken down into subtasks that are then assigned to

separate processors to perform simultaneously, instead

of sequentially as they would have to be carried out by a

single processor. Concurrent processing is sometimes

said to be synonymous with parallel processing. Here

paid user download and upload the files at the same time

so that quality of service are achieved in this project by

introducing the concurrent data transfer.

G. Secure Data Sharing In Cloud

Cloud systems can be used to enable data sharing

capabilities and this can provide an abundant of benefits

to the user. The benefits organisations can gain from

data sharing are higher productivity. With multiple users

from different organisations contributing to data in the

Cloud, the time and cost will be much less compared to

having to manually exchange data and hence creating a

clutter of redundant and possibly out-of-date documents.

Some of major requirements of secure data sharing in

the Cloud are as follows. Firstly the data owner should

be able to specify a group of users that are allowed to

view his or her data. Any member within the group

should be able to gain access to the data anytime,

anywhere without the data owner‟s intervention. No-one,

other than the data owner and the members of the group,

should gain access to the data, including the Cloud

Service Provider. The data owner should be able to add

new users to the group. The data owner should also be

able to revoke access rights against any member of the

group over his or her shared data. No member of the

group should be allowed to revoke rights or join new

users to the group.

H. Load Balancing And Data Delivery Module

Load balancing [6] is the process of reassigning the total

loads to the individual nodes of the collective system to

make the best response time and also good utilization of

the resources. Cloud computing is an internet computing

in which the load balancing is the one of the challenging

task. Various methods are to be used to make a better

system by allocating the loads to the nodes in a

balancing manner but due to network congestion,

bandwidth usage etc., there were problems are occurred.

These problems were solved by some of the existing

techniques. A load balancing [10] algorithm which is

dynamic in nature does not consider the previous state or

behavior of the system, that is, it depends on the current

behavior of the system. There were various goals that

related to the load balancing such as to improve the

performance substantially, to maintain the system

stability. Once the User send the request to process the

job, the Cloud Service Provider will pass the request to

the any of the sub cloud server in the Cloud Server

Provider. Each three data owner has one database based

request they retrieve the data via cloud server. So that

the User requested Job will be assigned to the available

sub cloud server via cloud service provider which

contains minimum load and the concerned sub cloud

server will process the User requested Job. The load

balancing strategy involves creating cloud partitions. A

cloud partition is a sub area of public cloud. Here the

divisions are based on the VDBSCAN algorithm. Once

the public cloud is partitioned, then the load balancing

starts when a job arrives at the system.

The main controller decides which cloud partition

should receive the job. The load balancer assigned for

each partition then decides how to assign the jobs to the

nodes. When the load status of a cloud partition is idle or

normal, this task can is accomplished locally. If the

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

258

cloud partition is overloaded, this job should be

transferred to another partition.

III. RESULTS AND DISCUSSION

A. Feasibility Study

The feasibility of the project is analysed in this phase

and business proposal is put forth with a very general

plan for the project and some cost estimates. During

system analysis the feasibility study of the proposed

system is to be carried out. This is to ensure that the

proposed system is not a burden to the company. For

feasibility analysis, some understanding of the major

requirements for the system is essential.

B. Economical Feasibility

This study is carried out to check the economic impact

that the system will have on the organization. The

amount of fund that the company can pour into the

research and development of the system is limited. The

expenditures must be justified. Thus the developed

system as well within the budget and this was achieved

because most of the technologies used are freely

available. Only the customized products had to be

purchased.

C. Technical Feasibility

This study is carried out to check the technical

feasibility, that is, the technical requirements of the

system. Any system developed must not have a high

demand on the available technical resources. This will

lead to high demands on the available technical

resources. This will lead to high demands being placed

on the client. The developed system must have a modest

requirement, as only minimal or null changes are

required for implementing this system.

D. Social Feasibility

The aspect of study is to check the level of acceptance of

the system by the user. This includes the process of

training the user to use the system efficiently. The user

must not feel threatened by the system, instead must

accept it as a necessity.

IV. CONCLUSION

We presented design primitives and parallel pattern-

based implementations of the fundamental query

processing operators and evaluated their performance in

a variety of settings and execution environments. Our

evaluation shows that it is indeed possible to effectively

use pattern-based parallelism for efficient query

processing. As a general set of guidelines, our results

show: That synchronization should be minimized: data

structures like the partition matrix reduce the need for

synchronization and significantly speed up even simple

operations like selections. That the less uniform a

distribution is, the more appropriate techniques like size-

bound partitioning become; That multiple passes are not

detrimental so long as they are all performed in parallel:

for instance, for machines with many hardware contexts,

multipass. Algorithms based on count-partitioning will

likely perform well. That deeper memory hierarchy‟s

make up for a wrong choice of algorithm: they improve

the utility of the higher level caches. Our study

reinforces the notion that the optimal choice of

algorithm is quite sensitive to the hardware, the number

of threads used, and to perturbations of the input

parameters. This verifies the increased complexity of the

problem and the need for elaborate analytical cost

models.

V. REFERENCES

[1] R. Acker et al., “Parallel Query Processing in Databases on

Multicore Architectures,” Proc. Eigth Int‟1 Conf. Algorithms
and Architecture Parallel Processing (ICA3PP), 2008.

[2] D.A. Alcantara at al., “Real-Time Parallel Hashing on the
GPU,” Proc. ACM SIGGRAPH, 2009.

[3] E.D. Berger et al., “Hoard: A Scalable Memory Allocator for
Multithreaded Applications,” Proc. Ninth Int‟1 Conf.
Architectural Support Programming Languages and Operating
Systems (ASPLOS), 2000.

[4] S. Blanas et al., “Design and Evaluation of Main Memory Hash
Join Algorithms for Multi-Core CPUs,” Proc. ACM SIGMOD
Int‟1 Conf. Management of Data, 2011.

[5] R.D. Blumofe et al., “Cilk: An Efficient Multithreaded Runtime
System,” Proc Fifth ACM SIGPLAN Symp. Principles and
Practice Parallel Programming (PpoPP), 1995.

[6] L. Bouganim et al., “Load Balancing for Parallel Query
Execution on NUMA Multiprocessors,” Distributed and Parallel
Databases, vol. 7, no. 1, pp. 99-121, 1999.

[7] P. Garcia and H.F. Korth, “Database Hash-Join Algorithms on
Multithreaded Computer Architectures,” Proc. Third Conf.
Computing Frontiers (CF), 2006.

[8] K. Eshghi and H. Tang, “A framework for analyzing and
improving content- based chunking algorithms”, Hewlett-
Packard Labs Technical Report TR. 30, (2005).

[9] L. Ramshaw and M. Marcus, “Text Chunking Using
Transformation- Based Learning,” In: D. Yarovsky and K.
Church, Eds., Proceedings of the Third Workshop on Very
Large Corpora, Association for Computational Linguistics,
Somerset, 1995, pp. 82-94.

[10] A.K. Sidhu, S. Kinger, “Analysis of Load Balancing Techniques
in Cloud Computing”, International Journal of Computers &
Technology,Volume 4 No. 2, ISSN 2277-3061, March-April,
2013.

